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ABSTRACT: De novo peptide sequencing is a valuable technique in mass-spectrometry-based
proteomics, as it deduces peptide sequences directly from tandem mass spectra without relying
on sequence databases. This database-independent method, however, relies solely on imperfect
scoring functions that often lead to erroneous peptide identifications. To boost correct
identification, we present NovoRank, a postprocessing tool that employs spectral clustering and
machine learning to assign more plausible peptide sequences to spectra. Prior to de novo peptide
sequencing, spectral clustering is applied to group similar spectra under the assumption that they
originated from the same peptide species. NovoRank then employs a deep learning model,
incorporating both cluster-derived proteomic features and individual spectrum characteristics, to
rerank the candidate peptides produced by de novo peptide sequencing. Our results show that
NovoRank significantly enhances the performance of various de novo peptide sequencing tools,
increasing both recall and precision by 0.020 to 0.080 at the peptide-spectrum match (PSM)
level. Notably, NovoRank achieves a recall as high as 0.830 for Casanovo at the PSM level. The
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source code of NovoRank is freely available at https://github.com/HanyangBISLab/NovoRank and is licensed under Creative

Commons Attribution-NonCommercial-ShareAlike 4.0 International.
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B INTRODUCTION

Mass spectrometry (MS)-based proteomics has been widely
used to identify protein expression and analyze their cellular
functions. The cornerstone of MS-based proteomics is
identifying peptides from tandem mass spectrometry (MS/
MS) spectra. Typically, MS/MS spectra are searched against a
protein sequence database, using software tools such as
SEQUEST,' MaxQuant,” MS-GF+’ and Comet.* This data-
base search approach, however, is limited in its capacity to
uncover novel peptides absent from existing databases. On the
other hand, de novo peptide sequencing, unrestricted by
predefined sequences, holds the promise of discovering new
peptides. Various software tools such as PEAKS,” pNovo3° and
Casanovo’ have been developed; however, these are prone to
inaccuracies due to noise and incomplete data (e.g., missing
backbone fragment ion peaks) because they depends solely on
MS/MS spectra to infer sequences.® For example, both N- and
C-terminal fragment ions (i.e., bl and yl ions) tend to be
missing in MS/MS spectra, leading to an ambiguous candidate
sequence order near the peptide termini. When the peptide
sequencing fails by such ambiguities, the correct identification
can often be rescued by reordering ranks. For instance,
pNovo3 trained SVM-rank based on the spectral similarity
between experimental and predicted spectra and database
statistics and reranked the top 10 candidate peptides for each
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spectrum obtained from pNovo.’ It also utilized “spectrum
merging” based on their precursor m/z and sequence tags to
refine the top-ranking peptide. Compared to pNovo,” pNovo3
improved the recall of top-ranking peptide up to ~2 times,
demonstrating the importance of reranking candidate peptides.
However, it only used pNovo as a built-in peptide sequencing
tool, making it difficult to apply the reranking approach for
other tools such as PEAKS and Casanovo.

To enhance the accuracy of de novo peptide sequencing, we
present NovoRank, a versatile postprocessing tool that can
improve the precision and recall of de novo peptide sequencing
results by reassigning the best peptide among possible
candidates. NovoRank first clusters MS/MS spectra based on
spectral similarity, precursor mass-to-charge ratio (m/z), and
retention time (RT). On the premise that MS/MS spectra
belonging to the same cluster originated from the same
peptide, two candidate peptides with the highest cluster-score
(C-score) are selected for each cluster. Then, it selects the
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Figure 1. Workflow of NovoRank. (A) Analysis flow of NovoRank. (B) Two-step clustering method. Colors represent a cluster in each step. (C)
Example cluster-score (C-score) calculation in a cluster of two MS/MS spectra. (D) Deep learning model to predict a more desirable peptide
among the top two candidate peptides in a cluster. ConvNet, BILSTM and FC stand for convolutional neural network, bidirectional long short-

term memory, and fully connected layer.

more desirable of the two peptides by taking the learning-to-
rank approach.'” NovoRank’s utility is demonstrated by its
ability to improve both peptide precision and recall by an
average of 0.046 and 0.04S, respectively, when tested with
results from various de novo peptide sequencing tools, thus
confirming its adaptability and broad application potential in
proteomics.

B EXPERIMENTAL SECTION

Experimental Data Sets

Four data sets of MS/MS spectra were downloaded from the
ProteomeXchange Consortium'' via the PRIDE partner
repository with the data set identifiers PXD004732,
PXD014222, PXD002395 and PXD001468.">~" Briefly, the
first data set, PXD004732, was acquired from the Orbitrap
Fusion ETD with the HCD activation mode.'” This data set
contained 6,3590,460 MS/MS spectra derived from synthetic
peptides in the ProteomeTools project. PXD014222 was
acquired from Q-Exactive HF with the HCD activation
mode."” This data set consisted of 761,549 MS/MS spectra
from colorectal cancer tissues. PXD002395'* and
PXD001468"° were acquired from the LTQ Orbitrap Velos
and Q-Exactive with the HCD activation mode, respectively.
The two data sets contained 576,114 and 1,121,149 MS/MS
spectra from Hela and HEK293 cell lines, respectively.
PXD004732, PXD014222, PXD002395 and PXD001468 are

referred to herein as the ProteomeTools, colorectal cancer
(CRC), Hela, and HEK293, respectively.

Training and Test

We performed de novo peptide sequencing on four data sets
using three different tools: 1) PEAKS (version 10.6), an
algorithm-based commercial tool, 2) Casanovo (v3.3.0), a
deep learning-based tool using transformer, and 3) pNovo3
(v3.1.2), combining both algorithm and machine learning
techniques to sequence peptides. For each data set, appropriate
precursor tolerances (10 or 20 ppm) and fragment tolerances
(0.02 or 0.025 Da) depending on data sets were used (Table
S1). Carbamidomethylation on Cys was set as a fixed
modification, and oxidation on Met was set as a variable
modification. For Casanovo, we sequenced spectra using a
pretrained model for tryptic/HCD (https://github.com/
Noble—Lab/casanovo/releases/tag/vS.0.0) and subsequently
discarded modified peptides with undesirable variable mod-
ifications except for oxidation on Met.

When training a deep learning model in NovoRank, we used
the MaxQuant search results of the ProteomeTools data set
(synthetic peptides). This low complexity MS/MS spectrum
allowed us to learn a clear pattern of fragment ion peaks. To
reduce false positives in the training data set, we only extracted
peptide-spectrum matches (PSMs) with a posterior error
probability (PEP) below 0.01 to obtain PSMs with high-
confidence. As a result, we retrieved 3,506,774 PSMs
corresponding to 134,615 peptides and subsequently used
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90% of the PSMs for training and the remaining 10% for
testing. By partitioning the training set, the validation set for
evaluating the deep learning model was obtained, and a 5-fold
cross validation was conducted. Train, validation, and test sets
were separated so that the peptides never overlapped. The
model was trained for a total of 10 epochs, optimizing based
on validation loss. Finally, to evaluate the model, we retrained
it using the entire ProteomeTools data set and tested it on
three independent data sets.

After training the model using the ProteomeTools data sets,
we evaluated the performance of the trained model using three
independent data sets (HEK293, Hela and CRC). To define
positives for the three data sets, we conducted a Comet
(v2021.01) search against the human protein sequences
(SwissProt v2021.04; 42,336 human protein sequences with
isoforms) and 179 common laboratory contaminants, con-
catenated with pseudoreverse decoy sequences. The search
parameters were the same as those for de novo peptide
sequencing. The false discovery rate (FDR) was calculated as
the ratio of decoy to target PSMs above the XCorr score
threshold using the target-decoy approach.'® We selected the
score threshold that maximized the number of target PSMs
while keeping the FDR below 0.01. As a result, we obtained
380,854 PSMs (138,644 peptides), 257,654 PSMs (76,536
peptides), and 298,485 PSMs (109,888 peptides) from
HEK293, Hela and CRC data sets, respectively. Those data
sets were used to evaluate the performance of NovoRank and
deposited in Zenodo at 10.5281/zenodo.14046459.

NovoRank Algorithms

Once peptides were sequenced by any de novo peptide
sequencing tool, NovoRank generated new candidate peptides
from the initial identification results and selected the best
peptide per MS/MS spectrum (Figure 1A). In the new
candidate generation step, we used the top n candidate
peptides for each spectrum obtained from the de novo peptide
sequencing, along with the spectral clustering result obtained
by sequentially applying two clustering methods, MS-Cluster'”
and DBSCAN'® (Figure 1B). Since pNovo3 allows either one
or ten candidate peptides per spectrum, we used the top ten
candidate peptides to ensure a fair comparison in this study.
Initially, spectra with similar patterns were grouped together
using MS-Cluster with the following parameters: “--fragment-
tolerance” set to 0.02 and “--mixture-prob” set to 0.01, forming
preliminary clusters that might still contain some degree of
heterogeneity. To refine these clusters, we applied the
DBSCAN algorithm, further segmenting the initial clusters
based on precursor m/z and RT in minutes, sequentially. RT
was consistently set to 2 across all samples, and precursor m/z
aligned with the de novo peptide sequencing parameter. It is
not straightforward to determine the optimized parameter
settings, but this configuration showed reasonably good
performance (Figure S1). This two-step clustering approach
resulted in more coherent clusters, where spectra in the same
cluster were more likely to originate from the same peptide
sequence.

After clustering, all of the original de novo peptide
sequencing results, known as PSMs, were collected within
the cluster (Figure 1C). To reflect the frequency of candidate
peptides in the same cluster, we introduced the cluster-score
(C-score) as follows:

Coscore. . = Licc S0y,
p,C
ICl

For each candidate peptide p in the cluster C, its C-score was
defined by dividing the sum of original de novo scores of a
candidate peptide p for each spectrum i € C by the cluster size
ICl. Thus, the C-score rewards peptides with higher de novo
scores and penalizes less frequent peptides within a given
cluster. In our example shown in Figure 1C, a peptide
candidate EPPTIDE was assigned a C-score of 43, because it
had only one de novo score of 86 and its cluster consisted of
two spectra. In the reranking problem, the C-score serves as an
important feature for selecting the most desirable candidate
peptide within the same cluster; therefore, the average of de
novo scores is functionally equivalent to their sum. However,
we have mainly two reasons for using the average of de novo
scores instead of their sum. First, it is not a simple average but
a normalizing sum by its cluster size, which reflects the
frequency of peptides within the cluster. Second, it allows for
discrimination between clusters with the same total de novo
scores but different sizes. For example, a small cluster with a
total de novo score of 100 should not be treated the same as a
large cluster with the same total de novo score.

In the reranking step, the two peptides with the highest C-
score in a cluster were input to a deep learning model (Figure
1D). We designed the model to embed PSM information for
each peptide and compare the two embedding vectors so that
the model can predict a relative score representing the better
peptide for a given MS/MS spectrum. To achieve this, we
implemented the model with two parts: 1) PSM embedding
and 2) comparing two PSMs.

For embedding a PSM, we used a concept equivalent to the
Siamese Network'® and RankNet,* featuring two identical
subnetworks with shared weights. This ensures that each PSM
is embedded in parallel without any bias toward the input
order (i.e., preventing one subnetwork from learning only from
positive data and the other from negative data). In the
subnetwork, we used a convolutional neural network (CNN)
which effectively extracted the localized features and patterns
in the high-dimensional MS/MS spectra. For embedding a
peptide sequence, we employed a bidirectional long short-term
memory (BiLSTM) network, which captured the sequential
features of the peptide sequences, preserving the order and
contextual information of amino acids. The embeddings from
the CNN (for the MS/MS spectrum) and BiLSTM (for
peptide) were combined with additional PSM features: C-
score, XCorr, internal fragment ions, and delta RT (Table S2),
predicting RT using DeepL.C*' for delta RT calculation.

The two vectors emitted from each subnetwork were
concatenated with delta C-score and delta XCorr, leveraging
both the learned representations of the spectra and sequences
as well as the relative scores to improve the accuracy of peptide
reranking. This combined vector was transformed into a single
value, ultimately indicating which identification is better. A
detailed explanation of the deep learning model is provided in
Supplementary Note 1.

NovoRank Score Threshold

The output value of the deep learning model is between 0 and
1. Given two PSM inputs, the first sequence is selected if the
output value is greater than 0.7 and the second sequence is
selected if the output is smaller than 0.3. If the value is closer
to 0.50, the NovoRank result is rejected and the original de
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Figure 2. Performance evaluation of two-step clustering and C-score reranking (CR) methods. (A) Purity of clusters for each data set is displayed
for MS-Cluster with/without DBSCAN. (B) Distributions of the number of tandem mass (MS/MS) spectra according to cluster sizes for MS-
Cluster with/without DBSCAN are shown across samples. (C) Comparison of recall at a peptide-spectrum match level between original and CR

results across tools and data sets.

novo peptide sequencing result is accepted. The boundary
cutoft values were determined through empirical comparisons
of six thresholds (Table S3).

B RESULTS AND DISCUSSION

Higher Purity of Two-Step Clustering Method

As input features for machine learning, NovoRank utilized
traditional peptide-spectrum match attributes but also
employed multiple spectral features (i.e., those defined by
spectral clusters). Assuming that similar spectra were likely to
be derived from the same peptide, clusters could lead to more
robust decisions. We employed MS-Cluster to aggregate
spectra by spectral similarity. Unlike typical clustering for
spectral library construction, we used MS-Cluster to gather
similar spectra but did not generate a representative
(consensus) spectrum. Based on confidently identified PSMs
retrieved from the ProteomeTools, HEK293, Hela and CRC
data sets’ database search results, we evaluated the spectral
clustering. If a cluster contains a single peptide, then it was
defined as a unique cluster. The purity of clustering results was
calculated as the fraction of unique clusters. MS-Cluster
showed high purity across four data sets. However, its
clustering was solely based on peak lists of spectra, resulting
in clusters with spectra having distant retention times and/or
precursor m/z, thus increasing the cluster impurity. To resolve
the problem, a secondary refinement was performed on each
preliminary cluster using DBSCAN, considering both
precursor m/z and RT. This two-step approach achieved an
average purity over 99.57% (less than 1% of the clusters
contained mixed peptides), demonstrating that our two-step
approach could cluster spectra effectively while rarely
sacrificing sensitivity (Figure 2A and Figure S2).

Due to the trade-off between purity and cluster size, the two-
step clustering generated smaller clusters compared to MS-
Cluster (Figure 2B). For example, in the Hela data set, the
two-step clustering generated 1.82 times more unique clusters
by further dividing clusters of size five or more. While this
approach might result in unnecessarily splitting clusters and
potentially losing cluster information (Figure S2), it resulted in
better accuracy by reducing impure clusters. Since these
clusters were used to calculate more reliable scores of
candidate peptides, we opted to use the higher purity method,
i.e., two-step clustering.

Notably, in the ProteomeTools data set, 72.51% and 69.45%
of MS/MS spectra were grouped into clusters with a size above
nine by MS-Cluster and the two-step clustering, respectively,
largely due to the redundant scanning of synthetic peptides.

Improved Identification by C-Score Reranking

Given the two-step clustering results, we introduced a new
feature, C-score, which represents agreement among multiple
MS/MS spectra. To assess the effectiveness of the C-score, we
retained each result of de novo peptide sequencing from
Casanovo, pNovo3 and PEAKS across four data sets.
Following the two-step clustering for each data set, we selected
the top two candidate peptides per cluster based on C-score
and assigned them to each spectrum, ensuring all spectra in the
same cluster have the same top two candidate peptides. Using
the confidently identified PSMs from database searches as
positive data, we compared the top-ranking peptides between
the original results and those refined through C-score (Figure
2C and Table S4). We observed a higher recall rate for the
refined top-ranking peptides in all tools and data sets at the
PSM level. This result implied that a higher portion of similar
spectra were inconsistently sequenced in de novo peptide
sequencing, indicating that scoring functions were too sensitive
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Figure 3. Performance of NovoRank - comparing C-score reranking (CR) and original results across three de novo peptide sequencing tools and
three data sets. (A) Comparison of recall between CR and NovoRank at a peptide-spectrum match (PSM) level. (B) Comparison of recall between
original results and NovoRank at a PSM level. (C) Bar chart visualizing the overall gains, overlaps and losses of correct identifications.

to individual spectral peaks. Interestingly, Casanovo exhibited
more improvement compared with pNovo3, even though
Casanovo had relatively smaller room for improvement. The
ProteomeTools data set showed consistent increments across
all three tools. This may be because the synthetic peptides
were redundantly scanned by mass spectrometry, making the
C-score more reliable. Notably, pNovo3 and PEAKS had a
higher proportion of misassignment in rank 2 (an average of
0.092 and 0.102, respectively), indicating that a binary classifier
can possibly rescue them. Collectively, reranking candidate
peptides using C-score showed enhancement in identifications,
even for Casanovo, a state-of-the-art deep learning-based de
novo peptide sequencing tool, proving the effectiveness of C-
score.

Enhanced Performance Using Deep-Learning Approach

We have further developed a deep learning model as a part of
NovoRank to select a more plausible peptide between the first
and second ranking peptides determined by C-score (details in
the Experimental Section). Briefly, we trained a deep learning
model for each tool using the ProteomeTools data set and
evaluated its performance against the independent published
data sets such as HEK293, Hela and CRC data.

We compared the final results of NovoRank with 1) the C-
score reranking method and 2) the original search results.
Compared to the C-score reranking method, there was no
meaningful improvement in Casanovo (Figure 3A). Such
results were expected because Casanovo had a lower
proportion of correct peptides in rank 2 (less than 3% in the
ProteomTools data set) (Figure 2C), making it difficult for the
model to learn the properties of rank 2 PSMs. In practice, the
simpler method of C-score reranking without deep learning

optimization would be sufficient for Casanovo. On the other
hand, further increments in recall rates were observed in both
pNovo3 and PEAKS across all three data sets. In contrast to
the lower increments by the C-score reranking method
observed in pNovo3 (less than 1.4%) (Figure 2C), an average
of 0.028 increment was achieved by NovoRank. When
compared with the original search results, NovoRank achieved
an average of 0.036, 0.037, and 0.063 increased recall at the
PSM level in Casanovo, pNovo3 and PEAKS, respectively
(Figure 3B).

Next, we examined whether the enhanced PSM identi-
fication yielded an increase in the peptide identification rate
(Figure 3C). When compared with the original search results,
NovoRank missed only 0.18%—0.63%, 0.79%—1.45% and
0.86%—3.24% of the correct peptides in Casanovo, pNovo3
and PEAKS, respectively. This indicated that after refining
PSMs, 98.77% of peptides were consistently identified on
average, demonstrating that NovoRank could robustly refine
PSMs without comprising sensitivity. In terms of gains,
NovoRank achieved 0.37%—0.61%, 7.52%—18.80% and
3.06%—4.24% increases in correct peptide identifications in
Casanovo, pNovo3 and PEAKS, respectively. These gains were
consistently higher than their losses in pNovo3 and PEAKS;
however, Casanovo brought about no meaningful changes at a
peptide level (less than 1% for both gains and losses), while an
average of 0.036 improvement in recall at a PSM level was
observed (Figure 3B). It is noteworthy that the original results
of PEAKS identified more than the original results of pNovo3
at the PSM level in all samples; however, pNovo3 out-
performed PEAKS in Hela and CRC after applying NovoRank.
Moreover, a large improvement in pNovo3 was observed on
HEK293, implying that NovoRank is more compatible with
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Figure 4. Precision and recall of NovoRank across three de novo peptide sequencing tools and three data sets. Precision and recall are depicted in

(A) and (B), respectively, according to various score thresholds.

pNovo3 among the three tools. Taken together, these results
demonstrate that NovoRank can robustly refine results of de
novo peptide sequencing tools adopting the deep learning
approach in combination with the C-score reranking.

Practical Assessment of NovoRank’s Performance

Due to the lack of proper FDR estimation methods for de novo
peptide sequencing, score thresholding has been widely used in
practice. Therefore, traditional evaluations, such as precision
and recall, according to each data point, hardly provide users
with a sense of a proper score threshold. To make the
evaluation more practically meaningful, the scores were
normalized to range from 0 to 100. And then we calculated
precision and recall for scores above specific thresholds (e.g.,
90, 80, -+, 0). This approach allowed us to present cumulative
estimates of precision and recall for scores exceeding these
thresholds, thereby facilitating a more effective assessment of
the method’s performance.

We treated isoleucine as leucine and used only a positive
data set (i.e, PSMs with an FDR below 1%) to evaluate the
performance of NovoRank. We defined a true positive (TP)
when the predicted peptide sequence above a score threshold
exactly matched the ground truth sequence. While a false
positive (FP) is defined as where the predicted peptide
sequence above a score threshold does not match the ground
truth, a false negative (FN) occurs if the de novo tool fails to
predict a peptide sequence (i.e, no result is returned for the
MS/MS spectrum) or if the score is below the threshold. In
this analysis, we focused on precision and recall to evaluate the
performances. Based on these definitions, precision and recall
are defined as follows:

TP

Precision = ——
TP + FP

TP

Recall = ——
TP + EN

After that, we further evaluated the performance by
comparing the precision and recall between the original results
and those refinements made by NovoRank according to the
score thresholds at the PSM level (Figure 4 and Figure S3).

As expected, the precision and recall were consistently
improved by NovoRank across the score thresholds in general.
Interestingly, the three tools showed clearly different patterns
regardless of the refinement by NovoRank. pNovo3 showed
unstable precision, with scores exceeding 70; for example, it
achieved precision of over 0.9 in CRC data, while the others
ranged between 0.6 and 0.7. We could say that a sparsity of
high-scoring PSMs in pNovo3 resulted in unstable perform-
ance estimation at the precision level. On the other hand,
Casanovo showed consistent precision and recall across all
score thresholds in terms of the original results as well as
refinements by NovoRank, indicating that correct PSMs
tended to have high-scores. When we used a score threshold
of 90 for Casanovo after applying NovoRank, we could expect
a high precision (~0.88) with a satisfactory recall greater than
0.7. This is particularly valuable for the identification of novel
peptides. As for PEAKS, it showed the most typical curves
across three samples in terms of precision and recall rate. Using
score threshold 90 for PEAKS, we could expect a comparable
precision to that of Casanovo. To sum up, these empirical
evaluations demonstrated an enhanced performance achieved
by NovoRank and provided valuable insights into the proper
score thresholds for utilizing de novo peptide sequencing in
practical applications.
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B CONCLUSIONS AND FUTURE WORK

In this work, we introduced NovoRank as a deep learning
based postprocessing tool for de novo peptide sequencing,
capable of improving both precision and recall at the same
time. To demonstrate that NovoRank can be effective
regardless of specific de novo sequencing tools employed, we
widely categorized de novo peptide sequencing methods into 1)
an algorithm-oriented (PEAKS), 2) a machine learning based
(pNovo3) and 3) a deep learning based (Casanovo) approach
and evaluated NovoRank performance when each method was
adopted. It would be particularly interesting to compare
between pNovo3 and pNovo with NovoRank, because
pNovo3 is an upgraded version of pNovo with a machine
learning-based reranking module of its own; however, the
standalone software of pNovo has been deprecated. We have
not performed comprehensive comparison with Spectralis, a
most recently published postprocessing tool for de novo
peptide sequencing.”” The authors have applied Casanovo
(v3.2.0) results to test the performance of Spectralis as a
rescorer. Similarly with the NovoRank, it showed marginal
improvement in recall at 90% precision, implying that both
methods may have the potential to offer comparable
performance.

We used four different MS/MS data sets—ProteomeTools,
HEK293, Hela and CRC data sets—and evaluated the C-score
reranking method. The results demonstrated that the simple
two-step clustering and C-score reranking can improve results
in the three de novo peptide sequencing tools, indicating a
potential extension to any tools. To further enhance accuracy,
we introduced a newly designed deep learning model for
reranking, embedding both spectra and sequences to find
hidden information. Using six features that assist in distinguish-
ing accurate peptide spectrum matches, we achieved additional
performance gains in the de novo sequencing results. Moreover,
we provided valuable insights to select proper score thresholds
for de novo peptide sequencing, which could be particularly
useful for the applications oriented in identifying novel
peptides such as neoantigen discovery. While the performance
of NovoRank for Casanovo may be somewhat limited at the
peptide level, the enhanced identification of PSMs across all
three tools highlights its potential as a versatile reranking tool
for de novo peptide sequencing.

Lastly, we designed NovoRank to rerank candidate peptides
at the PSM level, while the identification is ultimately
influenced by the level of evidence from multiple spectra in
the same cluster. As future work, an improved algorithm that
addresses the peptide level (or cluster level) identification
probability (or score) rather than the PSM level could be
beneficial to select the better candidate peptide.
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